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Regression coefficients in the presence 
of measurement errors 

• 𝑉𝑎𝑟 𝑦 =
1

𝑅

𝜎2
𝜏

𝑛
 

• ’Effective sample size’ is not n, it is  Rn 

• Recall that the estimated variance is largely 
ok, despite the true variance is enlarged by 
measurement errors 

• In regression analysis measurement errors in y 
will enlarge residuals but not introduce bias 
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Bias in regression 

• Measurement error in x will: 
– Attenuate slope 

– Attenuate correlation 

– Make intercept larger, if all variables are non-negative 
and slope positive 

• Often hard to guess if measurement error affects 
analysis a lot or only modestly 

• Sometimes hard even to guess direction, let 
alone how severely measurement errors 
influence estimates 
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From now on focus on dichotomous 
variables 

• Y is either 1 or 0 

• Interested in proportions 

• True score is prob(yi=1) (i.e. = E(yi)) 

• m=2 yields a 2x2 table: 

 

 

• Gross error and net error 
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Shortcut Computation 

Reinterview (y2) 
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( 1)
Thus, when 1,

Inconsistency Ratio is

Re liability Ratio

1
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
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Notes on I: 

1. Estimation of I or R requires two measurements or observations  

from the response distribution 

2. 0< I<1 

 small I (or R is large) ==> small measurement error 

 large I (or R is small) ==> large measurement error 

3. U.S. Census Bureau “Rule of Thumb” 

0.0 < I <0.2 ==> good reliability (R >.8) 

0.2 < I <0.5 ==> moderate reliability (.5 < R <.8) 

0.5 < I <1.0 ==> poor reliability (0 < R <.5) 

 
U.S. Bureau of the Census (1985) 
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Estimation of I from Reinterview 

Recall 

2 2

b c g
SRV

n


 

1 1 2 2

1 1 2 2 1 2 2 1

or

or or
2 2

SV SRV p q p q

p q p q p q p q

 

 
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Therefore, we can estimate I (or R) in a number of ways: 

1

1 1

2

1 1 2 2

3
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3

3

ˆTheestimateof denoted by iscalled the"index of inconsistency"

It can beshown (see Hess, Singer, and Bushery, 1999) that

ˆ1 is identical toCohen 's kappa statistic

I I

      

I 

Why is this result remarkable? 
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NOTE: 

2

1 2
1

1 2 1 2

1 2
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Var | ) Var | ) 2Cov( , | )

Thus,if Cov( , | ) 0, then willoverestimate .
2

Further, if Cov( , | ) 0, will underestimate .
2
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The Classification Probability Model 
(Bross 1954, Biemer and Stokes, 1991) 

Next, we consider a better specified model for measurement 

error in categorical data, referred to as the classification 

probability error model.    

Recall that 

= expectation across the “columns” of responses for a 

 given unit on the row of the response probability  

    matrix. 

= expectation across “rows” or all possible selections 

 of units or samples of units from the rows. 

(• | )jE s

( | )s jE E i
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Terminology and notation 

•     referred to as probability of a false 

positive 

•          referred to as “specificity” 

•      is  probability of a false negative 

•           referred to as “sensitivity” 

•                              true population proportion 

 

i

1 i

i

1 i

P( 1)i   
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( | ) Pr( 1| )i j ij ijP E y s y i  

truevaluei 

We now extend that notation 

Again, consider 
1 if or" "

0 if or" "
ij

  yes  
y

  no  


 



( 1| 0) false positive probability

( 0 | 1) false negative probability

ij i i

ij i i

P y     

P y     

    

    
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Thus, we have the following for unit i 

0

1

0

1

ijy

0

0

1

1

i | )

1 specificity

false positive probability

false negative probability

1 sensitivity

ij i

i

i

i

i

P(y

  

         

         

  











i

( | ) ( 1| )

( 1| 1) ( 1) ( 1| 0) ( 0)

(1 ) (1 )

j ij ij

ij i i ij i i

i i i

E y s P y s

P y P P y P

 

           

     



16 

Let ( )

( )

Then
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Bias of p 

From these results, 

Bias( ) ( )ij ijy E y  (1 ) (1 )    

(1 )  
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When is the bias 0? 
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Bias = 0 if and only if either: 

 
(1 ) 

0

or 
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Variance of p 

• Note that       from Census Model can 

be written as 
iP

(1 ) if 1

if 0

i i i

i i

P    

  

or 

(1 ) (1 )i i i iP      
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Variance of p Under the Classification Probability 
Model 

Assumptions: Same as Census Bureau Model 

Recall, under Census Bureau Model for m =1 

2 2

1 2Var( ) (1 )
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p f
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Rewriting SV and SRV 

1.  

Let’s find      (or SV) and       (or SRV) Under this Model 2

1S 2

2S

2
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Rewriting SV and SRV (cont’d) 

1 1
1
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Rewriting SV and SRV (cont’d) 

Therefore, after some algebra 

21
(1 )(1 )

N
SV = 

N


 
     

 

where 
2 2(1 )      

(Note: Often,        is assumed to be negligible.) 

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Rewriting SV and SRV (cont’d) 

2. 
2

2
1

1 N

i i
i

S PQ SRV
N 

  

Where 
(1 ) (1 )i i i i iP     

After some algebra, 

(1 ) (1 ) (1 )SRV       
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Remarks: 

1. If       can be ignored, f

2

( )

(1 )(1 )

(1 ) (1 ) (1 )

nVar p SV SRV 

  

     
 

2. This is useful for studying how false +’s and 

false –’s affect variance 
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Remarks: (cont’d) 

3. R (and I) vary as       varies. 

4. When        is very small even a small false positive 
error rate can be important. 

Eg. 

 

 

Then I = .50 or 50% 

π
π

.01 0

.01 0

   

   
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Summary 

(1 ) (1 ) (1 )SRV       

21
(1 )(1 )

N
SV = 

N


 
     

 

(1 ) (1 ) (1 )
I

PQ

         


This expression illustrates the difficulty of 

interpreting I for categorical data. 
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Estimation of SRV and I 

Note:  As we showed before, 

 

for SRV provided assumptions are satisfied. 

Recall the key assumptions are: 

• Independence of classification errors 

• Equal classification probabilities across trials 

or repeated measurements 

g

2 2

b c

n


 is unbiased 
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Estimation of Bias 

Suppose reinterview is truth. This is usually assumed for reconciled 

reinterview 
Gold Standard 

 

Interview 

1 0 

1 a b 

0 c d 
Est. of bias is 

1 2

a+b a+c
p p

n n
   b c

n




net 

difference 

rate 
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Estimation of False Positive and False Negatives 

                           Gold Standard 

 

Interview 

1 0 

1 a b 

0 c d 

ˆ estimates , false positive

ˆ estimates , false negative

b
    

b+d

c
   

a+c

  

  
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Example 

Reconciled Reinterview 

Unemp Other 

Interview Unemp 200 20 

Other 6 3000 

n = 3226 

20 6
.004

3226

20ˆ .007
3020

6ˆ .029
206

Bias


 

  

  
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Problems with Reconciled Reinterview 

1.  Assumes agreements are correct. 

2.  Assumes disagreements can be reconcile accurately. 

3. Biemer & Forsman; Sinclair & Gastwirth show this is 
not true for many surveys. 

See Forsman and Schreiner (1991) for a good discussion of the 

issues with reinterview 
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Question 

• For test-retest reinterview, what does a 
significant net difference rate indicate? 

 

• How should the net difference rate be 
interpreted if the second measurement is 
from a “preferred” survey process? 
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